Quiz 5

Grade AS

Subject Pure Mathematics

Paper Name Paper 3

Duration 60 minutes

Student's Information

Name (Pinyin)	English Name	Class	Group

Instructions

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Do **not** use an erasable pen or correction fluid.
- Write your answer to each question in the space provided.
- If additional space is needed, you should use the lined page at the end of this booklet; the question number or numbers must be clearly shown.
- You should use a calculator where appropriate.
- You must show all necessary working clearly; no marks will be given for unsupported answers from a calculator.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- You are reminded of the need for clear representation in your answers.

Information:

- The total mark for this paper is 60.
- The number of marks for each question or part question is shown in brackets [].

By the proposed method or hints (if any), or otherwise, evaluate each of the following integrals, giving all your answers in exact forms wherever appropriate.
$1. \int \frac{\ln x}{x} \mathrm{d}x $ [3]
2. $\int \frac{1}{x^3 - x} dx$; by first decomposing into partial fractions [5]

3.	\int_{2}^{3}	$\frac{x}{x^2}$	$\frac{c}{+1} ds$	c;	by su	ıbstitut	ion					I	[5]
4.	\int_{2}^{3}	$\frac{x}{x^2}$	$\frac{c}{-1} dz$	c								ĺ	[5]
4.	\int_{2}^{3}	$\frac{x}{x^2}$	$\frac{c}{-1} dz$					 	 	 	 		[5]
4.	$\int_{2}^{3} \dots$	$\frac{x}{x^2}$	$\frac{c}{-1} dz$					 	 	 	 		
4.	\int_{2}^{3}	$\frac{x}{x^2}$	$\frac{c}{-1} dz$					 	 	 	 		
4.	$\int_{2}^{3} \dots$								 	 	 		
4.	\int_{2}^{3}												
4.	$\int_{2}^{3} \dots$							 	 				
4.	$\int_{2}^{3} \dots$							 	 				
4.								 	 	 			
4.								 	 	 	 		

5.	$\int_0^4 x\sqrt{2x+1}\mathrm{d}x$	[5]
6.	$\int \frac{x}{x^2 + x + 1} \mathrm{d}x;$	[5]
6.	$\int \frac{x}{x^2 + x + 1} \mathrm{d}x;$	[5]
6.	$\int \frac{x}{x^2 + x + 1} \mathrm{d}x;$	[5]
6.	$\int \frac{x}{x^2 + x + 1} \mathrm{d}x;$	[5] ·····
6.	$\int \frac{x}{x^2 + x + 1} \mathrm{d}x;$	
6.		
6.		
6.		
6.		
6.		

7.	$\int_0^{\pi^2} \sin \sqrt{x} \mathrm{d}x;$ by using a suitable substitution, followed by integration by parts [[6]
8.	$\int_{1}^{2} \frac{\mathrm{e}^{\frac{1}{x}}}{x^{3}} \mathrm{d}x$	[6]
8.	$\int_{1}^{2} \frac{e^{\frac{1}{x}}}{x^3} \mathrm{d}x$	[6]
8.	$\int_{1}^{2} \frac{e^{\frac{1}{x}}}{x^{3}} \mathrm{d}x$	[6]
8.	$\int_{1}^{2} \frac{e^{\frac{1}{x}}}{x^{3}} \mathrm{d}x$	
8.		
8.		
8.		
8.		
8.		

9.	. $\int \mathrm{e}^{-x} \sin 2x \mathrm{d}x;$ by app	plying integration by parts twice	[6]
10.	$\int_0^{\frac{\pi}{4}} \sin x \cos 2x \mathrm{d}x$		[6]
10.	$\int_0^{\frac{\pi}{4}} \sin x \cos 2x \mathrm{d}x$		[6]
10.	$\int_0^{\frac{\pi}{4}} \sin x \cos 2x \mathrm{d}x$		[6]
10.			
10.			
10.			
10.			
10.			
10.			
10.			

$\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{x^3 + x^2 - x + 1}{x^4 - 1} \mathrm{d}x;$	by first decomposing into partial fractions	[8]